30 reviews in English,  18 reviews in Japanese (Until the year 2023)

 

 

1. Sakuma K, Hamada K, Yamaguchi A, Aoi W. Current Nutritional and Pharmacological Approaches for

    Attenuating Sarcopenia. Cells 12(19): 2422, 2023

 

 

2. Sakai K, Nakayama E, Yoneoka D, Sakata N, Iijima K, Tanaka T, Hayashi K, Sakuma K,  Hoshino E.

    Association of Oral Function and Dysphagia with Frailty and Sarcopenia in Community-Dwelling Older Adults:

    A Systematic Review and Meta-Analysis. Cells 11(14): 2199, 2022

 

 

3.  Matsuo, H, Sakuma, K. Pathophysiology of cachexia and characteristics of dysphagia in chronic diseases.

    Asia Pac J Oncol Nurs 9(10): 100120, 2022

 

 

4. Sakuma K, Yamaguchi A.  Recent advances in pharmacological, hormonal, nutritional intervention for

    sarcopenia.  Pflügers Archiv 470: 449-460, 2018 

 

 

5. Sakuma K, Aoi W, Yamaguchi A.  Molecular mechanism of sarcopenia and cachexia: recent research advances. 

    Pflügers Archiv 469: 573-591, 2017

 

 

6. Sakuma K, Aoi W, Yamaguchi A.  Current understanding of sarcopenia: possible candidates modulating muscle

    mass.  Pflügers Archiv 467: 213-229, 2015

 

7. Wakabayashi H, Sakuma K.  Rehabilitation nutrition for sarcopenia with disability: a combination of both

    rehabilitation and nutrition care management.  J Cachexia Sarcopenia Muscle 5: 269-277, 2014


8.
 Sakuma K, Aoi W, Yamaguchi A.  The intriguing regulators of muscle mass in sarcopenia and muscular

    dystrophy.  Front Aging Neurosci 6: Article ID 230, 17 pages, 2014


9. Wagatsuma A, 
Sakuma K.  Vitamin D signaling in myogenesis: potential for treatment of sarcopenia.  Biomed Res

    Int 2014: Article ID 121254, 13 pages, 2014

 

10. Wakabayasi H, Sakuma K.  Comprehensive approach to sarcopenia treatment.  Curr Clin Pharmacol 9: 171-180,

    2014

 

11. Aoi W, Sakuma K.  Does regulation of skeletal muscle function involve circulating microRNAs?  Front Physiol 5:

    Article ID 39, 8 pages, 2014

 

12. Sakuma K, Yamaguchi A.  Sarcopenic obesity and endocrinal adaptation with age.  Int J Endocrinol 2013: Article

    ID 204164, 12 pages, 2013


13. Suwa M, Sakuma K.  The potential role of sirtuins regarding the effects of exercise on aging-related diseases.

      Curr Aging Sci 6: 178-188, 2013

 

14. Aoi W, Sakuma K.  Skeletal muscle: novel and intriguing characteristics as a secretory organ. Biodiscovery 7:

      2, 9 pages, 2013

 

15. Sakuma K, Yamaguchi A.  Serum response factor (SRF)-dependent signaling in regenerating, hypertrophied,

      and pathological skeletal muscle.  Front Pathol Genet 1: 1-8, 2013

 

16. Wagatsuma A, Sakuma K.  Mitochondria as a potential regulator of myogenesis.  Scientific World Journal 2013:

      Article ID 593267, 9 pages, 2013


17. Kano Y, 
Sakuma K.  Effect of aging on the relationship between capillary supply and muscle fiber size.

       Adv Aging Res 2: 37-42, 2013

 

18. Wakabayashi H, Sakuma K.  Nutrition, exercise, and pharmaceutical therapies for sarcopenic obesity.

       J Nutr Ther 2: 100-111, 2013

 

19. Sakuma K, Yamaguchi A : Recent research developments in regeneration of skeletal muscle.  J Phys Fitness

      Sports Med 1: 401-411

20.
 Sakuma K, Yamaguchi A.  Molecular determinants of skeletal muscle hypertrophy.  J Sports Med & Doping

      Studies 2012: S1-002, 2012

 

21. Sakuma K, Yamaguchi A.  Sarcopenia and age-related endocrine function.  Int J Endocrinol 2012: Article ID

      127362, 10 pages, 2012

 

22. Sakuma K, Yamaguchi A.  Novel intriguing strategies attenuating sarcopenia.  J Aging Res 2012: Article ID

      251217, 11 pages, 2012

 

23. Wagatsuma A, Sakuma K.  Molecular mechanisms for age-associated mitochondrial deficiency in skeletal

      muscle.  J Aging Res 2012: Article ID 768304, 14 pages, 2012

 

24. Sakuma K, Yamaguchi A.  Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle

      mass.  J Cachexia Sarcopenia Muscle 3: 77-94, 2012

 

25. Sakuma K, Yamaguchi A: Current application of cyclosporine A to investigate skeletal muscle adaptation.  Curr

      Enzyme Inhibit 7: 154-162, 2011

 

26. Sakuma K, Yamaguchi A : The recent understanding of the neurotrophin's role in skeletal muscle adaptation.

      J Biomed Biotechnol 2011: Article ID 201696, 12 pages, 2011

 

27. Sakuma K, Yamaguchi A : Inhibitors of myostatin- and proteasome-dependent signaling for attenuating muscle

      wasting.  Recent Pat Regen Med 1: 284-298, 2011

 

28. Aoi W, Sakuma K. Oxidative stress and skeletal muscle dysfunction with aging.  Curr Aging Sci 4: 101-109,

      2011.

 

29. Sakuma K, Yamaguchi A.  The functional role of calcineurin in hypertrophy, regeneration, and disorders of

      skeletal muscle.  J Biomed Biotechnol 2010: Article ID 721219, 2010

 

30. Sakuma K, Yamaguchi A.  Molecular mechanisms in aging and current strategies to counteract sarcopenia.

 

      Curr Aging Sci 3: 90-101, 2010

 

1. 佐久間邦弘筋肉の異化と同化.  腎と透析 90: 329-333, 2021

 

2. 佐久間邦弘. カヘキシアにおけるサルコペニアの分子機構.  医学のあゆみ 274: 563-566, 2020 

 

3. 佐久間邦弘. サルコペニアの病態生理.  Medical Practice 37: 689-693, 2020

 

4. 佐久間邦弘. 細胞機能の恒常性.  体育の科学 70: 107-111, 2020

 

5. 佐久間邦弘. タンパク分解とサルコペニアの機構.  Geriatric Medicine 57: 775-779, 2019

 

6. 佐久間邦弘. 高齢者にアミノ酸の摂取は有効か.  介護予防・健康づくり 6: 47-48, 2019

 

7. 佐久間邦弘. サルコペニア発症の分子機構.  日本サルコペニア・フレイル学会雑誌 1: 19-22, 2017

 

8. 佐久間邦弘. サルコペニアとオートファジー.  食と医療 1: 78-85, 2017  

 

9. 佐久間邦弘. サルコペニアの分子制御機構.  BioClinica 31: 18-22, 2016  

 

10. 佐久間邦弘. フレイルとサルコペニア.  Anti-Aging Medicine, 12: 38-44, 2016  

 

11. 佐久間邦弘. 運動による骨格筋の分化・再生に働く制御機構.  体育の科学 66: 653-658, 2016  

 

12. 佐久間邦弘. サルコペニア発症の分子機構.  腎と透析 80: 612-616, 2016

 

13. 佐久間邦弘.  サルコペニア発症の分子機序.  最新医学別冊 診断と治療のABC, p. 25-31, 2016

 

14. 佐久間邦弘. サルコペニアの発症機構. 最新医学 70: 51-57, 2015 

 

15. 佐久間邦弘サルコペニアの発症メカニズム. Geriatric Medicine 52: 337-341, 2014

 

16. 佐久間邦弘. 遺伝子からみた筋肥大と筋萎縮. 体育の科学 55: 584-590, 2005

 

17. 佐久間邦弘. 筋線維組成・筋肥大を規定する遺伝子. 体育の科学 51: 678-683, 2001

 

18. 戸塚武, 渡辺貴美, 佐久間邦弘, 浦本勲. 筋ジストロフィー症は筋成長障害 (逆説) 成長指向性の善玉病変. 

      臨床検査 44: 445-449, 2000